spazio vuoto logo alto

ICONA Facebook666666 ICONA Flickr666666 ICONA Youtube666666

Banner News

L’analisi di dieci anni di campionamento di CO2 disciolta nelle acque delle falde appenniniche ha mostrato la sua massima concentrazione in occasione
di intensa attività sismica

Nella catena appenninica l’emissione di CO2 di origine profonda appare ben correlata con l’occorrenza e l’evoluzione delle sequenze sismiche dell’ultimo decennio. È questo il risultato dello studio “Correlation between tectonic CO2 Earth degassing and seismicity is revealed by a ten-year record in the Apennines, Italy” condotto da un team di ricercatori dell’Istituto Nazionale di Geofisica e Vulcanologia (INGV) e dell’Università di Perugia (UNIPG) appena pubblicato su ‘Science Advances’.
“Per la prima volta è stata condotta un’analisi dei dati geochimici e geofisici raccolti dal 2009 al 2018”, spiega Giovanni Chiodini, ricercatore dell’INGV e coordinatore dello studio. “Gli esiti di questa ricerca hanno evidenziato una corrispondenza tra le emissioni di CO2 profonda e la sismicità mostrando come, in periodi di elevata attività sismica, si registrino picchi nel flusso di CO2 profonda che man mano diminuiscono al diminuire dell’energia sismica e del numero di terremoti”.
Il nostro pianeta rilascia CO2 di origine profonda prevalentemente dai vulcani; tuttavia tali emissioni avvengono anche in aree sismiche in cui non sono presenti vulcani attivi. In particolare, questo fenomeno risulta più intenso nelle regioni caratterizzate da tettonica estensionale, come l’area degli Appennini.
“Per quanto le relazioni temporali tra il verificarsi di un evento sismico e il rilascio di CO2 siano ancora da studiare”, prosegue Chiodini, “in questo studio ipotizziamo che l’evoluzione della sismicità nella zona appenninica sia modulata dalla risalita di CO2 accumulata in serbatoi crostali e derivata dalla fusione di porzioni di placca che si immergono nel mantello”.
Questa produzione continua di CO2 in profondità e su larga scala favorisce la formazione di serbatoi sovrapressurizzati.
“La sismicità nelle catene montuose”, aggiungono i ricercatori dell’INGV Francesca Di Luccio e Guido Ventura, co-autori dello studio, “potrebbe essere correlata alla depressurizzazione di questi serbatoi e al conseguente rilascio di fluidi che, a loro volta, attivano le faglie responsabili dei terremoti”.
Lo studio è stato condotto attraverso il campionamento di sorgenti ad alta portata (decine di migliaia di litri al secondo) situate nelle vicinanze delle zone epicentrali dei terremoti verificatisi in Italia centrale tra il 2009 e il 2018.
“Tali campionamenti hanno permesso di caratterizzare l’origine della CO2 disciolta nell’acqua delle falde acquifere e di quantificare l’entità della CO2 profonda”, spiega Carlo Cardellini, ricercatore del Dipartimento di Fisica e Geologia dell’Università di Perugia, anche lui nel team di ricercatori coinvolti nella scoperta.
“La stretta relazione tra il rilascio di CO2 e l’entità dei terremoti, unitamente ai risultati di precedenti indagini sismologiche, indica che i terremoti dell’Appennino registrati nel decennio analizzato sono associati alla risalita di CO2 profonda. È interessante rimarcare il fatto che le quantità di CO2 coinvolte sono dello stesso ordine di quelle emesse durante le eruzioni vulcaniche (circa 1,8 milioni di tonnellate)”, conclude Chiodini.
I risultati dello studio forniscono, dunque, delle evidenze su come i fluidi derivati dalla fusione di placca nel mantello svolgano un ruolo importante nella genesi dei terremoti, aprendo nuovi orizzonti nella valutazione delle emissioni di CO2 a scala globale. Questo lavoro dimostra e ricorda, infine, come il moderno studio dei terremoti necessiti di un approccio multidisciplinare in cui integrare dati geochimici, geofisici e geodinamici.

Link allo studio

---

Discovered a correlation between earthquakes and carbon dioxide in the Apennines

The analysis of ten years of sampling of CO2 dissolved in the groundwaters of the Apennines showed its maximum concentration during intense seismic activity

In the Apennine chain, the emission of CO2 of deep origin appears to be well correlated with the occurrence and evolution of the seismic sequences of the last decade. This is the result of the study 'Correlation between tectonic CO2 Earth degassing and seismicity is revealed by a ten-year record in the Apennines, Italy' conducted by a team of researchers from the Istituto Nazionale di Geofisica e Vulcanologia (INGV, Italy) and the University of Perugia (UNIPG, Italy) just published in ‘Science Advances’.
"For the first time an analysis of geochemical and geophysical data collected from 2009 to 2018 was carried out", explains Giovanni Chiodini, INGV researcher and coordinator of the study. "Results of this research have shown a correspondence between deep CO2 emissions and seismicity. In periods of intense seismic activity, peaks in the deep CO2 flux are observed, meanwhile they dampen when the seismic energy and the number of earthquakes decrease".
The Earth releases CO2 of deep origin mainly from volcanoes, although these emissions also occur in seismic areas where there are no active volcanoes. In particular, this phenomenon is more intense in regions characterized by extensional tectonics, such as the area of the Apennines.
“Although the temporal relationships between the occurrence of a seismic event and the release of CO2 are not yet fully understood", continues Chiodini, "In this study we hypothesize that the evolution of seismicity in the Apennines is modulated by the rise of CO2 accumulated in crustal reservoirs and produced by the partial melting of the plate subducting beneath the mountain chain".
The continuous large-scale production of CO2 at depth favors the formation of overpressurized reservoirs. “Seismicity in mountain ranges”, add Francesca Di Luccio and Guido Ventura, INGV researchers and co-authors of the study, "could be related to the depressurization of these reservoirs and the consequent release of fluids which, in turn, activate the faults responsible for earthquakes".
The study was conducted by sampling the high-flow rate springs (tens of thousands of liters per second) located in the vicinity of the epicentral areas of the earthquakes that occurred in central Italy between 2009 and 2018. "These samplings allowed us to characterize the origin of the CO2 dissolved in the water of the aquifers and to quantify the amount of the dissolved deep CO2", explains Carlo Cardellini, researcher of the Department of Physics and Geology of the University of Perugia, co-author of the discovery.
"The close relationship between the CO2 release and the number and magnitude of the earthquakes, along with the results of previous seismological surveys, indicate that the earthquakes in the Apennines occurred in the last decade are associated with the rise of deeply derived CO2. It is worth mentioning that the amount of CO2 involved is of the same order as that emitted during volcanic eruptions (approximately 1.8 million tons in ten years)”, concludes Chiodini.
Therefore, the results of the study provide evidence on how the fluids derived from the decarbonation of a subducting plate play an important role in the genesis of earthquakes, opening new horizons in the assessment of CO2 emissions at global scale. Finally, this work demonstrates and supports how the modern study of earthquakes requires a multidisciplinary approach in which geochemical, geophysical and geodynamic data need to be integrated.

Link to the study

Cs correlazione terremoti e anidride carbonica in Appennino testo 1 rid

Forte emissione di CO2 associata alla risalita di acqua (piana di San Vittorino, Rieti).
L’emissione è ubicata a circa 30 chilometri dall’epicentro del terremoto dell’Aquila di aprile 2009.

Strong free CO2 emission associated with groundwater discharge (San Vittorino plain, Rieti).
The emission is located about 30 km far from the epicentre of the April 2009 L’Aquila earthquake.

Cs correlazione terremoti e anidride carbonica in Appennino testo 2 rid

I terremoti appenninici nel periodo 2007-2019 (inclusi gli eventi catastrofici del 2009 e 2016) sono stati accompagnati da picchi evidenti nella quantità di CO2 trasportata dalle grandi sorgenti in Appennino (tonnellate al giorno di CO2 nel grafico).

Cs correlazione terremoti e anidride carbonica in Appennino testo 3 rid

The Apennine earthquakes during 2007-2019 (including the destructive events of 2009 and 2016) were accompanied by evident peaks in the amount of CO2 dissolved and transported by the large Apennine water springs (tonnes per day of CO2 in the diagram).